Dedekind
Eta
Database
Introduction
The Dedekind eta function, \( \eta(\tau) \), is a modular form with the following properties:
- Holomorphic on the upper half-plane: \( \operatorname{Im}(\tau) > 0 \).
-
\[
\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n),
\quad q = e^{2\pi i \tau}
\]
\[
\eta(\tau + 1) = e^{\pi i /12} \eta(\tau), \qquad
\eta(-1/\tau) = \sqrt{-i\tau}\, \eta(\tau)
\]